Building a Universal Assistant
This tutorial demonstrates how to create a versatile Universal Assistant using CAP and LangGraph that can handle multiple types of tasks and data sources.
Video Tutorial
Features
- Multi-modal input processing
- Dynamic tool selection
- Adaptive response generation
- Context-aware interactions
- Multiple data source integration
- MCP-based orchestration for reliable communication
Implementation
from cap.agents import UniversalAgent
from cap.tools import ToolRegistry
from cap.memory import ConversationMemory
from cap.mcp import MCPClient
class UniversalAssistant(UniversalAgent):
def __init__(self):
super().__init__()
self.memory = ConversationMemory()
self.tools = ToolRegistry()
self.mcp = MCPClient()
async def process_input(self, input_data: dict) -> dict:
# Determine input type and context
context = await self.analyze_input(input_data)
# Select appropriate tools
selected_tools = self.tools.select_for_context(context)
# Process with selected tools via MCP
results = await self.mcp.process_with_tools(input_data, selected_tools)
# Generate appropriate response
response = await self.generate_response(results, context)
# Update memory
self.memory.add_interaction(input_data, response)
return response
Deployment
module "universal_assistant" {
source = "./modules/lambda"
name = "universal-assistant"
runtime = "python3.9"
handler = "handler.lambda_handler"
environment = {
OPENAI_API_KEY = var.openai_api_key
MEMORY_STORE = var.memory_store
TOOL_CONFIG = var.tool_config
MCP_SERVER_URL = var.mcp_server_url
}
}
Key Components
Input Analysis
- Content type detection
- Context extraction
- Intent recognition
- Priority assessment
MCP Integration
- Reliable tool communication
- Load balancing
- Error handling
- Performance monitoring
Tool Management
- Dynamic tool registration
- Context-based selection
- Performance monitoring
- Error handling
Data Sources
- Integration with multiple API data sources
- Create specialized agents for different data sources
- Combine multiple data sources for comprehensive insights
- Automated source selection based on context
Try It Out
- Clone the repository
- Follow setup in Getting Started
- Configure required API keys
- Deploy using provided Terraform configuration
- Test with various input types