Building a Universal Assistant
This tutorial demonstrates how to create a versatile Universal Assistant using CAP and LangGraph that can handle multiple types of tasks and data sources.
Video Tutorial
Features
- Multi-modal input processing
- Dynamic tool selection
- Adaptive response generation
- Context-aware interactions
- Multiple data source integration
- MCP-based orchestration for reliable communication
Implementation
from cap.agents import UniversalAgent
from cap.tools import ToolRegistry
from cap.memory import ConversationMemory
from cap.mcp import MCPClient
class UniversalAssistant(UniversalAgent):
    def __init__(self):
        super().__init__()
        self.memory = ConversationMemory()
        self.tools = ToolRegistry()
        self.mcp = MCPClient()
        
    async def process_input(self, input_data: dict) -> dict:
        # Determine input type and context
        context = await self.analyze_input(input_data)
        
        # Select appropriate tools
        selected_tools = self.tools.select_for_context(context)
        
        # Process with selected tools via MCP
        results = await self.mcp.process_with_tools(input_data, selected_tools)
        
        # Generate appropriate response
        response = await self.generate_response(results, context)
        
        # Update memory
        self.memory.add_interaction(input_data, response)
        
        return response
Deployment
module "universal_assistant" {
  source = "./modules/lambda"
  
  name = "universal-assistant"
  runtime = "python3.9"
  handler = "handler.lambda_handler"
  
  environment = {
    OPENAI_API_KEY = var.openai_api_key
    MEMORY_STORE = var.memory_store
    TOOL_CONFIG = var.tool_config
    MCP_SERVER_URL = var.mcp_server_url
  }
}
Key Components
Input Analysis
- Content type detection
- Context extraction
- Intent recognition
- Priority assessment
MCP Integration
- Reliable tool communication
- Load balancing
- Error handling
- Performance monitoring
Tool Management
- Dynamic tool registration
- Context-based selection
- Performance monitoring
- Error handling
Data Sources
- Integration with multiple API data sources
- Create specialized agents for different data sources
- Combine multiple data sources for comprehensive insights
- Automated source selection based on context
Try It Out
- Clone the repository
- Follow setup in Getting Started
- Configure required API keys
- Deploy using provided Terraform configuration
- Test with various input types